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operators 
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Received 8 October 1979 

Abstract. Transformation to a body fixed reference frame and direct projection of angular 
momentum quantum numbers are alternative ways to account for rotational invariance of a 
many-body Hamiltonian. We illustrate both procedures by comparing the Born-Huang 
and the generator coordinate treatment of a diatomic system. 

1. Introduction and definitions 

Group theory provides a way to partially determine the eigenfunctions of a Hamil- 
tonian operator from their transformation properties. Configuration space can always 
be divided into parts which result from a fundamental region by applying the elements 
of the symmetry group. If the wavefunction is known in the fundamental region, it is 
known everywhere. In particular, rotational invariance implies that the wavefunction is 
completely determined by its values at all interparticle distances, i.e. for all ‘shapes’ of 
the many-body system. Mathematically this is expressed through the transformation 
law of angular momentum eigenstates 

Here DhK(fl) are the Wigner D-functions of Euler angles fl as defined in Edmonds’ 
standard textbook (Edmonds 1957) on angular momentum. In this context it is 
customary to adopt the passive point of view of rotations, i.e., x’  are the coordinates of 
the particles in a rotated system of axes specified by the Euler angles R. The connection 
between the operator gP(R) transforming the original frame S into the rotated one S’ 
and the coordinate change x’  = P(R)x is as follows 

1Ir(x’)  = (fl)*(x) = V(P(R)X) (1.2) 
gp(fl) (1.3) 

cos y cos p cos a -sin y sin a -sin y cos p cos a -cos y sin a sin p cos a 
cos y cos sin a +sin y cos a -sin y cos p sin a +cos y cos CY sin p sin CY 

-cos y sin p sin y sin /3 cos p 
(1.4) 

where J is the total angular momentum of the system. 
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For an explicit derivation of these results and a clarification of some well hidden 
errors in textbooks on the subject we refer to Bouten (1969). Historically Wigner 
(1959) first demonstrated that the S‘ axes could be defined by putting three constraints 
on the particle coordinates. Hirshfelder and Wigner (1935) further pointed out that 
one could think of S’ as being rigidly attached to the particle structure. In this way one 
was lead to the concept of the ‘body-fixed frame’ (BF-frame). It is then possible, at least 
in principle, to always separate rotational from other types of collective motion by 
transforming the Hamiltonian to the BF-frame and to factorise out the total angular 
momentum squared (Edmonds 1957) 

The above scheme is based on first using the transformation properties of the exact 
wavefunction and will have to be complemented with an approximate expansion of the 
‘internal’ part of this function in a suitable basis set. An alternative way of working is 
obtained by interchanging these two steps, i.e., first expand the eigenstates and then 
project from these approximate forms functions with good angular momentum quan- 
tum numbers. This can be done by means of the so called angular momentum 
projection operators 

which are superpositions of group elements with the corresponding irreducible 
representations as weight factors. Here one takes the active point of view for the 
rotation operators 

(1.7) 

because only then does there exist an isomorphism between the rotation operators 
about the different axes in space and the associated matrices transforming the coor- 
dinates (Wigner 1959). PLK, which is an integral operator, projects from any function 
an eigenstate of J 2  and J, with associated quantum numbers J and M respectively. 
Such a function will however be K dependent. Therefore the final states are written as 
superpositions 

~ ~ ( f i )  = e-iaJz - - 3i1 (cl) 

q J M ( x ) = C  c K @ J M K ( x )  (1.8) 
K 

in which the coefficients cK are determined variationally. Using the following proper- 
ties of the PLK 

[H, p ’ M K ] =  0 ,  (PLK)+ = P’KM, PJKMP& = PJKK~ (1.9) 

& [H&’ -J??A&,]CK, = 0 

H&’ = (@IH&’l@) = (o’JPJKK~ IQ). (1.11) 

the resulting secular equation reads 

(1.10) 
K 
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Both methods outlined are of course formally equivalent if the expansions used are 
exact. In practice, however, their usefulness will depend upon how transforming the 
Hamiltonian under consideration compares with projecting angular momentum for the 
chosen basis states. We will illustrate the possible differences by working out the 
problem for a diatomic system. 

2. Diatomic systems as an example 

After separating off the centre of mass motion the Hamiltonian for a system of two 
nuclei with charges and masses (Zl, Ml), ( Z 2 ,  M2) and a number of electrons can be 
written as 

-zi ( 1 / I r i - ~ i l ) - z 2 Z  ( l / l r i - R 2 l > + C  (1/ki-rjI) .  (2.1) 
i i i < j  

Here p is the reduced mass (M1M2)/M, ri the position of the ith electron measured 
from the centre of mass of the nuclei, R the vector connecting the two nuclei and 
R1 = - (MzR)/M, R2 = + ( M I R ) / M  (M = M I  +M2) .  H commutes with the total 
angular momentum 

J =  R x P + c  ri xpi = L+I (2.2) 
i 

which is the sum of a nuclear L and an electronic 1 contribution. From the above 
expression it is clear that H depends upon the internuclear vector R (not on RI and RZ 
separately) such that we can write Schrodinger's equation as 

H(r, RP'JM(~,  R) = E J ~ J M ( ~ ,  RI. (2.3) 

The Born-Oppenheimer (Born and Huang 1954) and adiabatic approximations 
have made it customary to decompose H as the sum of the kinetic energy of the nuclear 
relative motion and the so called electronic Hamiltonian 

(2.4) H(r, R) = - ( ~ / ~ P ) A R  +He(r, R) 

As an operator acting on the space of functions square integrable in the electron 
coordinates He is clearly invariant under rotations about R and reflexions through 
planes containing R. Therefore the solutions to the electronic Schrodinger equation 
can be labelled as follows (Landau and Lifshitz 1964) 

He(r, R)vnA(rlR) = ~nA(R)vnA(rlR). (2.5) 

Here A denotes the absolute value of the electronic angular momentum along the 
internuclear axis, i.e. I .  R / R ,  while n stands for all other quantum numbers. The fact 
that He commutes with R itself is demonstrated by the parametric dependence of the 
electronic eigenvalues and eigenfunctions upon this quantity. This is stressed by 
separating the dynamical coordinates r from the parameters R by a vertical bar in the 
electronic eigenstates. By writing U,, = UnA(R) we have anticipated the well known 
result (to be derived later) that the electronic eigenvalues depend upon the relative 
distance between nuclei only. 
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Before going any further one should notice that in writing down the Hamiltonian as 
in (2.1) we have neglected relativistic effects and assumed the coupling between the 
electron spin and orbital angular momenta to be negligible. 

2.1. A BF-frame in the Born-Huang series 

A convenient definition of the rotating reference frame for a diatomic system is to 
choose the 2’-axis along the internuclear vector, i.e., the Euler angles a, p are taken as 
the polar angles wR = ( p R ,  OR) of R. This corresponds to always taking y’  perpendicular 
to the z, 2’  plane (Goodisman 1973). The transformation law (1.1) then takes the form 
(a = ((PR, OR, 0))  

* . d r ,  R) = c D<A ( (PR,  @R, O)*JA(r ‘ ,  Re,,) 
(2.6) A 

=E D<A (WR)q-rA(r’lR). 
A 

The new electron coordinates are functions of the polar angles of R ,  i.e., r’ = r ‘ (wR) .  

The transformation of a position vector ri to rl is given by (1.4) putting (a, p, y )  = 
( (PR,  OR, 0). Clearly one has 

(2.7) ( J .  R ) / R  = Jz,  = lzt = ( I .  R ) / R  

i.e., there is no nuclear angular momentum about the body fixed axis. We have 
therefore used the notation A, common for the electronic angular momentum lz,, to 
specify the J,, components in (2.6). 

An appropriate basis to expand the qJA(r’1R) are the electronic states pnA(r’IR) 
defined in the BF-frame. For each A and R they form a complete set such that the full 
wavefunction takes the form 

in which the radial functions g;,,(R) remain to be determined. Each term in this 
expansion is a so called adiabatic wavefunction. Summation of the electronic quantum 
numbers gives the Born-Huang (BH) series (2.8) (Born and Huang 1954). 

On substituting (2.8) into Schrodinger’s equation one must take into account the 
implicit dependence of the electron coordinates on the polar angles WR. This means that 
differentiations with respect to ( P ~  and OR are to be replaced by 

ax: a a -+c---y+. . .=-- aeR i adR axi aeR ily< 
a 

a 
i cos ORlZr+i sin eRlx’ - a ax: a -+E--,+... a m  i aqorp axi a (PR 

( 2 . 9 ~ )  

(2.9b) 

where the partial derivatives indicate differentiation with respect to explicit occurrence 
of 8R and (PR.  Making this substitution amounts to transforming the Hamiltonian from 
the space-fixed (SF-frame) to the BF-frame. The extra terms arising from the nuclear 
kinetic energy can be combined to give the total angular momentum squared (A(wR) is 
the angular part of A R )  

(2.10) 
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and a number of coupling terms. Expression (2.10) can easily be checked from (1.5) 
noticing that in this case (qR, OR) = (a, p )  and lzf = -i alar. Substitution of (2.8) into the 
transformed Schrodinger equation then gives a set of coupled differential equations for 
the radial functions g:A(R) 

(2.11) 

The coupling terms contained in C:A,n,A, are proportional to matrix elements of 
following form 

( (PnA(R ) I  1: l ~ t t ' A = k l ( R  1) (qo,A(R)ll:' + ~ ~ ' I ~ f l t A ( R ) ) -  (2,126) 

The two groups are referred to as radial and angular couplings respectively. The 
explicit expression for the full set of equations is rather lengthy and will not be given 
here. It can be found in Redmon (1974) and Van Vleck (1951). 

2.2. Angular momentum projection operators in the generator coordinate expansion 

Recently an alternative to the Born-Huang approach, based on the 'generator coor- 
dinate theory of molecules, was suggested (Lathouwers 1979). The generator coor- 
dinate form of the wavefunction is an expansion in terms of basis functions 
XflA(r), Rla) = qflA(rla)@(IR -al) which are products of an electronic and a nuclear 
part. The cpnA(rla) are the eigenstates of the electronic Hamiltonian He(&) = He(R = 
a) whereas the function @(IR -a I) strongly localises the nuclei around a position 
specified by the vector a, i.e., @(IR-aI) is significantly different from zero only if 
lR -a1 =: 0. One can therefore say that the basis products xflA describe electrons moving 
in the force field determined by the most probable positions of the nuclei. The 
wavefunction is now generated as a superposition of the XflA(r, Rla) by summing over 
the electronic quantum numbers n A  and integrating over the vector a 

(2.13) 

where the FnA(a)  are the expansion coefficients. The components of a are generally 
referred to as generator coordinates because they appear as extra variables serving only 
to label the basis states and generate the wavefunction through integration. In this 
process, however, they disappear from the final result "(r,  R). For further details on 
the GCM we refer to Lathouwers (1978). What interests us here is that (2.13) is an 
exact representation of the wavefunction Lathouwers (1979) such that the variational 
principle applied to the weight functions F , , A ( ~ )  will automatically lead to angular 
momentum eigenstates. The question is whether one can also determine part of the 
Ff lA(a )  from first principles by analogy with the separation of the Wigner D-functions 

For this purpose we will use the following property of the electronic Hamiltonian: 
(1.1). 

the parametric dependence of He on the generating vector a is such that 

He(a) = %e(wa)He(aez)3Z,' (0,) (2.14j 
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where e, is the space fixed z-axis and 9 , ( w a )  the (active) rotation operator in the 
electron space. This relation is a direct consequence of the fact that Coulomb 
interactions depend upon the mutual distance between the particles only. Equation 
(2.14) states that H e ( a )  and H e ( a e , )  are unitary equivalent. This implies that the 
spectra of these operators are identical, i.e., U,, = UflA(a) = U , , A ( ~ ) ,  a result we used 
earlier (2.5). Furthermore the associated eigenfunctions are transformed into each 
other through the unitary operator g e ( w a ) ,  i.e., 

As for the nuclear part of the basis functions it is clear that 

9Jua) indicating the rotation operator in nuclear space. Combining (2.15) and (2.16) 
we can state that for the full intrinsic states one has 

X n A ( r ,  R la )=B(wa)Xf lA(r ,  R l a e z ) .  (2.17) 

It is also easily seen that Xf lA(aez)  in an eigenstate of J,  with eigenvalue A 

The last two equations can now be used to partially determine the weight function 
FnA(a) .  Using (2.17) we can write (2.13) as 

(2.19) 

In this expression one starts to recognise the form of the angular momentum projection 
operators (1.6). Firstly, one can easily build in the third, redundant, Euler angle, say ya, 
by inserting e'@ in front of XnA(aez) .  Secondly, knowing that P ~ K  working on 
an eigenfunction of J, will give zero unless the associated eigenvalue equals K and 
taking into account the variational procedure (1 A)-(1.11) the angular dependence of 
the weight functions must be such that 

(2.20) J *  ~iY(a)  =AL ( a ~ . w A  (ma ). 

With this choice the GCM wavefunctions will be the angular momentum eigenstates 

(2.21) 

The optimal radial weight functions obey a set of coupled integral equations 
(Lathouwers 1979) which can be derived using (2.21) and the projection operator 
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properties (1.9). 

(2.22) 

(2.24) 

The expressions for the kernels can be further simplified inserting the explicit form of 
the projection operators and using properties (2.17) and (2.18) of the intrinsic states. 
For example, the most complicated matrix elements to be calculated here, i.e., the 
Hamiltonian couplings H : A , f l * A , ,  become 

H L , ~ , N  (a, P )  

= I d COS 8 diA,(8)(XflA(Cte,)lH e-ieJy(Xfl,A@ez)) 

3. Discussion and generalisations 

Before discussing the differences between the above two approaches we will emphasise 
their interrelationship. The generator coordinate functions in (2.21) are constructed in 
such a way that they give the corresponding adiabatic ones if one fixes the nuclei in the 
intrinsic states, i.e., if one sets @(IR-al)=S(R-a).  This implies that all GCM 
quantities, such as energies and weight functions, will go over into their adiabatic 
counterparts, eigenvalues of adiabatic differential equations and nuclear wavefunc- 
tions, if one makes the substitution @ = S.  In particular (2.13) becomes 

which is an expansion in space-fixed electronic states. From the GCM treatment of 
total angular momentum it follows that if (3.1) is to be an eigenstate QJM(r, R) of J 2  and 
J, one must have 

While it is clear from (3.2) that 

(3.4) 
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Combining the last two expressions gives the BH expansion of the wavefunction (2.8) in 
the BF-frame version. This elementary arithmetic shows that 

i.e., in the delta function limit the GCM weight functions, and consequently each of the 
individual terms in the GCM expansion, are transformed into the adiabatic nuclear 
wavefunctions and the associated terms in the BH series. 

We will discuss the differences between the two schemes used by means of table 1 in 
which consecutive steps in the process of arriving at the final equations are compared. 
Each of the following paragraphs treats one point of comparison. 

Table 1. 

Born-Huang expansion Generator coordinate expansion 

Technique used to obtain 
angular momentum 
eigenstates 

Type of rotation operators Passive 

Resulting type of equations 

Origin of coupling terms 

Transformation to the BF-frame 

Coupled differential equations 

Coupling of electronic states by 
the nuclear kinetic energy in the 
BF-frame 

Matrix elements of first and 
second-order differential 
operators with respect to 
electronic states in BF-frame 

Form of the coupling terms 

Introduction of angular 
momentum projection operators 

Active 

Coupled integral equations 

Coupling of JM projections from 
different intrinsic states by the SF 
Hamiltonian 

Integrals of Wigner d-functions 
and matrix elements of the SF 
Hamiltonian with respect to 
intrinsic states 

In the Born-Huang expansion the transformation to the BF-frame is the starting 
point. Afterwards an expansion of the internal wavefunction is introduced. In the 
GCM, however, a space-fixed expansion is introduced first, after which rotational 
symmetry is treated in the space of GC’s via angular momentum projection operators. 
This interchange between a technique to conserve total angular momentum and the use 
of a basis set implies that in the Born-Huang approach a transformation to the 
BF-frame is necessary while in the CCM the original space-fixed Hamiltonian can be 
used. 

A further implication of the above mentioned switch is the type of rotation 
operators appearing in the respective formulations. Obviously the body-ked or 
rotating system of axes leads to the passive point of view. In the GCM, however, the 
wavefunctions are superpositions of basis states associated with different orientations of 
the GC vector. It is then more natural to adopt the active point of view and to look upon 
the intrinsic states x n A ( a )  as active rotations of the basis functions xIIA(aez) .  Because of 
the existing isomorphism between active rotation operators and the associated coor- 
dinate transformations and the fact that it is easier to visualise the actual rotational 
motion of the many-body system through the basis functions, we find it didactically 
appealing to use the GC approach. 
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Comparing the coupled equations (2.11) and (2.22) one notices that the potential 
energy curves and coupling potentials have been replaced by integral kernels. In 
general one can say that integral equations give a more global picture than the pointwise 
evolution implied by differential operators. As for the computation of the quantities 
entering the coupled equations the evaluation of the matrix elements (2.12a-b) have 
been discussed in detail in the literature (Browne 1972). The main complications 
arising are the derivatives with respect to R of the electronic states, since the latter may 
depend upon internuclear distance in various ways (orbital exponents, orbital centres, 
and expansion coefficients). For an easy computation of the GC kernels one must keep 
two things in mind, Firstly, it is preferable to use the same type of one-particle basis 
functions for electrons and nuclei (e.g. Gaussians) since this will lead to well known 
multicentre integrals. Secondly if one wants to compute everything in a space-fixed 
frame it must be possible to replace the effect of rotation operators by an equivalent 
transformation in the GC space, i.e., intrinsic states are to be constructed such that 
(2.17) holds. 

It is clear that the Born-Huang couplings (2.12a-b) vanish unless AA = 0, ~5.1. In the 
GCM the coupling between two electronic states AI and A2 is governed by matrix 
elements of PilA2. This means that in the GCM one can have an idea of the (Al, A2) 
interaction strength by estimating the size of these integrals whereas in the Born-Huang 
approach a solution of the equations linking A1, and A2 is the only way to find out the 
importance of the coupling between these states. The separation in radial (AA = 0) and 
angular (AA = *l) couplings does not appear in the GCM. It should also be noticed that 
when a diabatic basis (Smith 1969) is used, the form of the GCM equation is 
unmodified. In contrast, different and (or) additional coupling terms arise if diabatic 
states are used in the BH series. 

In the polyatomic case the most popular choice for the BF-axis is the so called 
Eckart (1930) frame. This set of axes is convenient to separate the rotational and 
vibrational motion of the system by approximating it by a semi-rigid rotor and by 
introducing normal vibrational coordinates. However, the explicit transformation of 
the molecular Hamiltonian to the Eckardt frame becomes prohibitively complicated. A 
workable set of coupled differential equations for the general polyatomic case has, to 
our knowledge, never been given. In the GCM the situation is more favourable. 
Indeed, electronic Hamiltonians for differently oriented nuclear skeletons are, as in the 
diatomic case, unitary equivalent. If one then constructs the nuclear basis functions 
from one-particle functions (P(lR, -ail), properly taking account of nuclear statistics, 
one obtains intrinsic states for which rotations in Hilbert space can be replaced by GC 
transformations. This means that the projection techniques can be used without further 
ado. The only complication arising is that since the intrinsic states will no longer be 
eigenstates of Jz, generation of matrix elements will involve three Euler angles and the 
full set of coefficients c k  will have to be determined variationally. Thus, in the GCM the 
total angular momentum of a polyatomic system can be conserved at the cost of 
three-dimensional integrals over Euler angles and the solution of a (2J + 1)-dimen- 
sional secular equation. 

The use of BF or SF frames, in molecular scattering problems, has been discussed 
extensively (for a review see Choi et al (1978)). In general one can say that the 
derivation of cross-sections is more tractable in the BF formulation, whereas matching 
the asymptotic boundary conditions is easier in a SF approach (Pack 1973). The GCM 
has been extended to include scattering situations Lathouwers (1979) and a separate 
paper will be devoted to its treatment of atom-atom collisions. 
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